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ABSTRACT

The World Wide Web is fast becoming a ubiquitous computing envi-
ronment. Prevalent keyword-based search techniques are scalable, but are
incapable of accessing information based on concepts. We investigate the use
of concepts from multiple, real-world pre-existing, domain ontologies to de-
scribe the underlying data content and support information access at a higher
level of abstraction. It is not practical to have a single domain ontology to
describe the vast amounts of data on the Web. In fact, we expect multi-
ple ontologies to be used as different world views and present an approach to
“browse” ontologies as a paradigm for information access. A critical challenge
in this approach is the vocabulary heterogeneity problem. Queries are rewrit-
ten using interontology relationships to obtain translations across ontologies.
However, some translations may not be semantics preserving, leading to un-
certainty or loss in the information retrieved. We present a novel approach
for estimating loss of information based on navigation of ontological terms.
We define measures for loss of information based on intensional information
as well as on well established metrics like precision and recall based on ex-
tensional information. These measures are used to select results having the
desired quality of information.



1. Introduction

The World Wide Web has fast become a preferred information access and applica-
tion support environment for a large number of computer users. In most cases, there
is no centralized or controlled information management, as anyone can make a wide
variety of data available on the Web. This has facilitated an exponential growth
in the accessible information on the Web. In distributed and federated database
systems [23], logical integration of the schemas describing the underlying data is
used to handle the structural and representational heterogeneity. In a tightly cou-
pled federated database approach, the relationships are fixed at schema integration
or definition time. In a loosely coupled federated database (or multidatabase) ap-
proach, the relationships are defined when defining the multidatabase view prior to
querying the databases. Neither of these options are feasible nor appealing in the
much more diversified and unmanaged Web-centric environment.

Use of domain specific ontologies is an appealing approach to allow users to
express information requests at a higher level of abstraction compared to only key-
word based access. As discussed in [12], we view ontologies as the specification
of a representational vocabulary for a shared domain of discourse which may include
definitions of classes, relations, functions and other objects. Since one cannot expect
a single ontology to describe the vast amounts of data on the Web, we believe it
is necessary the use of multiple domain specific ontologies as different world views
describing the wide variety of data and capturing the needs of a varied community
of users. A critical issue that prevents wide spread use of ontologies is the labor
intensive nature of the process of designing and constructing an ontological specifi-
cation. In the OBSERVER! system, we demonstrate our approach of using multiple
pre-existing real-world domain ontologies to access heterogeneous, distributed and
independently developed data repositories. This enables the use of “off the shelf
ontologies”, thus minimizing the need of designing ontologies from scratch.

One consequence of our emphasis on ontology re-use is that they are developed
independently of the data repositories and have been used to describe information
content in data repositories independently of the underlying syntactic representation
of the data [14]. New repositories can be easily added to the system by mapping
ontological concepts to data structures in those repositories. This approach is more
suitable for open and dynamic environments such as the Web, and allows each data
repository to be viewed at the level of the relevant semantic concepts.

We present, an approach for browsing multiple related ontologies for information
access. A user query formulated using terms in some user view/domain ontology is
translated by using terms of other (target) domain ontologies. Mechanisms dealing
with incremental enrichment of the answers are used. The substitution of a term
by traversing interontological relationships like synonyms (or combinations of them
[17, 18]) and combinations of hyponyms (specializations) and hypernyms (general-
izations) provides answers not otherwise available by using only a single ontology.
However, this usually changes the semantics of the query. The main contribution
of this paper is the use of mechanisms to estimate loss of information (based on in-
tensional and extensional properties) in the face of possible semantic changes when
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translating a query across different ontologies. It may be noted that in our approach
thousands of data repositories may be described by tens of ontologies. In general,
a user may be willing to sacrifice the quality of information for a quicker response
from the system, as discussed in [24].

Several projects that deal with the problem of interoperable systems can be
found in the literature, e.g., TSIMMIS [6], SIMS [1], Information Manifold [15],
InfoSleuth [2], Carnot [8], etc. The commonalities between their approaches and
ours can be summed up as: (a) some way of using a high level semantic view
(ontology) to describe data content; and (b) use of specialized wrappers to access
underlying data repositories. In this paper, however, we present novel techniques to
estimate the loss of information incurred when translating user queries into other
ontologies. This measure of loss (whose upper limit is defined by the user) guides the
system in navigating those ontologies that have more relevant information; it also
provides the user with a “level of confidence” in the answer that may be retrieved.
We use well-established metrics, like precision and recall, and adapt them to our
context in order to measure the change in semantics incurred when providing an
answer with a certain degree of imprecision. This approach contracts with the
measure of the change in the extension used in classical Information Retrieval [22].

There have been approaches in the research literature for approximate query an-
swering in situations where answers are obtained from multiple information sources.
Most approaches attempt to estimate some measure of divergence from the true an-
swer and are based on some technique of modeling uncertainty. In the Multiplex
project [20], the soundness and completeness of the results are estimated based
on the intersections and unions of the candidate results. In our approach, the In-
formation Retrieval analogs of soundness (precision) and completeness (recall) are
estimated based on the sizes of the extensions of the terms. We combine these two
measures to compute a composite measure using a numerical value. This can then
be used to choose the answers with the least loss of information. Alternatively,
numerical probabilistic (possibilistic) measures are used in [25, 10], but are based
on ad hoc estimates of the initial probability (possibility) values. In our approach
we provide a set theoretic basis for the estimation of information loss measures.

The rest of the paper is organized as follows?. Section 2 introduces the query
processing strategy in OBSERVER, and briefly discusses the translation mechanisms
when synonym, hyponym and hypernym relationships are used for controlled and
incremental query expansion to different target ontologies. Section 3 describes the
techniques used to estimate imprecision in information retrieval using intensional
and extensional information. Section 4 justifies the approach used to measure the
information loss. In Section 5 we discuss the estimation of the loss across correlated
answers. Finally, conclusions are presented in Section 6.

2. Query Processing in OBSERVER

The idea underlying our query processing algorithm is the following: give the first
possible answer and then enrich it in successive iterations until the user is satisfied.

2To avoid duplication and for brevity, we do not repeat much of the basic discussion on query
processing approach and prototype system architecture which appears in [17] and focus here only
on the new contributions.



Notice that thousands of data repositories described by tens of ontologies could be
available in our context, so users will prefer to get a good set of semantically correct
data rather than waiting for a long time until all the relevant data in the Global
Information System have been retrieved. Moreover, a certain degree of imprecision
(defined by each user) in the answer could be allowed if it helps to speed up the
search of the requested information.

In the following we first present the main steps of our query processing approach,
then we show some features related to the Description Logics (DL) expressions that
comprise queries, and we finish with an illustrative example.

2.1.  Query Processing: Main Steps

The three main steps of the proposed query processing approach are the following:

Step 1: Query Formulation based on the user ontology

The user browses the available ontologies (which are ordered by knowledge areas)
and chooses a user ontology that contains the terms needed to express the semantics
of her/his information needs. Then, with the help of a GUI, the user chooses terms
from the user ontology to build the constraints and projections® that comprise the

query.

Step 2: Access data underlying the user ontology and present the answer

The DL expression that comprises the query is translated, with the help of map-
pings® [3] of the terms involved in such an expression, into several subqueries ex-
pressed in the local query language of the underlying repositories®. To perform
this task the system uses different translators and wrappers. Moreover, answers
coming from different data sources must be translated into the “language” of the
user ontology to facilitate removal of redundant objects and to update incomplete
objects. Thus, the answer is correlated and presented to the user. A more detailed
description of this step appears in [11, 17].

Step 3: Controlled and Incremental Query Expansion to Multiple Ontologies

If the user is not satisfied with the answer, the query processor retrieves more data
from other ontologies in the Global Information System to “enrich” the answer in
an incremental manner. Some researchers have looked into the problem of query re-
laxation [7, 5]. However, they have proposed techniques for query relaxation within
the same schema/ontology/knowledge base. We differ with the above in two impor-
tant ways: (1) we propose techniques for query relaxation across ontologies by using
synonym, hyponym and hypernym relationships; and (2) we provide techniques to
estimate the loss of information incurred.

3These projections and constraints are internally expressed by the system as an expression in
Description Logics (DL) [9] that represents the user query.

4Mappings in our approach are expressions of Extended Relational Algebra that relate terms
in ontologies with the underlying data elements.

51n the case of relational databases, the DL expression is translated into a list of SQL sentences.



In our system, a new component ontology, which we call the target ontolo-
gy, is selected from the Global Information System. The user query must be ex-
pressed/translated using terms of that target ontology. For that task, the user and
target ontologies are integrated (see [18]) by using the interontology relationships
defined between them. When a new ontology is made available to the Global In-
formation System, the semantic relationships between its terms and other terms in
other ontologies must be defined in a module called the Interontology Relationship
Manager (IRM) [17]. The IRM is the key for managing different component on-
tologies without missing the semantics of each one. Thus, this module manages the
semantic properties between terms in different ontologies, concretely it deals with
synonyms, hyponyms and hypernyms. This information allows integration of two
given ontologies in the system without user intervention. Other authors [13, 4] have
suggested different sets of relationships.

When the user and target ontology are integrated automatically by the system,
the user query is rewritten and classified in the integrated ontology. Two situations
can occur during this process:

(i) All the terms in the user query may have been rewritten by their correspond-
ing synonyms in the target ontology. Thus the system obtains a semantically
equivalent query (full translation) and no loss of information is incurred. In
this case, the plan to obtain the answer consists of accessing the data corre-
sponding to the translated query expression.

(ii) There are terms in the user query that cannot be translated into the target
ontology - they do not have synonyms in the target ontology (we call them
conflicting terms). This kind of translation is called a partial translation.

If, after the process of integration, the Query Processor has obtained a partial
translation, it tries to combine it with previously obtained partial translations in
order to obtain a new full translation [19]. Another alternative is the following: if the
user allows the system to provide answers with a certain degree of imprecision, new
plans could be generated by substituting the conflicting terms by semantically similar
expressions that could lead to a full translation of the user query. So, each conflicting
term in the user query is replaced by the intersection of its immediate parents
(hypernyms) or by the union of its immediate children (hyponyms), recursively,
until a translation of the conflicting term is obtained using only the terms of the
target ontology. Each substitution of a term in the original query implies a certain
loss of information.

This process can generate several possible translations of the user query into a
given target ontology. All the possibilities are explored and the result is a list of
plans for which the system will estimate the associated loss.

2.2.  Description Logics Expressions

Ontologies are defined using a knowledge representation system based on Descrip-
tion Logics (DL system) [9]. The core of those systems is their concept language,
which can be viewed as a set of constructors for denoting concepts and relationships
among concepts (roles). Besides concept, role, and individual names, the alphabet



of concept languages includes a number of constructors that permit the formation
of concept expressions®.

The set of constructors for concept expressions considered in this work are pre-
sented in Table 1, where ‘A’ is a concept name, ‘B’ and ‘C’ are concept expressions,

‘R’ is a role name, ‘n’ is a number and ‘i’ is an individual.

[ Constructor name | Syntax used |
concept name A
conjunction (AND B C)
universal quantification (ALL R B)
number restrictions (ATLEAST n R)
(ATMOST n R)
role fillers (FILLS R i)

Table 1: DL constructors considered and their syntax

As discussed earlier (step 3 of query processing), each conflicting term in the
user query is replaced by the intersection of its immediate parents or by the union
of its immediate children. This is valid for concept expressions which are sim-
ply term names or for concept expressions where only one term appears (‘FILLS’,
‘ATLEAST’ and ‘ATMOST"’). For the case of concept expressions involving two or
more terms (‘AND’ and ‘ALL’), we proceed in the following way.

Assume that the concept A subsumes concepts B and C' and is subsumed by
concepts D and FE in the integrated ontology (D and E are the immediate subsumers
of A, and B and C are the immediate subsumees of A); see Figure 1.

D\A/E
B/ \C

Figure 1: Example for the translation of different concept expressions

AND constructor. Consider the concept expression ‘(AND A F)’. AND denotes
conjunction and is interpreted as set intersection. The two cases explored in
the translation process are:

e A is replaced by the intersection of its immediate parents, D N E. The
concept expression can thus be translated as:

(AND D E F)

e A is replaced by the union of its immediate children, BUC'". Taking into
account that we do not consider the ‘OR’ constructor in DL expressions,
we generate the following plan using the union set operation:

(AND UNION(B,C) F)

6 As far as role expressions are concerned, we only consider role names.




The UNION operation is performed by the OBSERVER system. In DL
systems with the ‘OR’ constructor, the previous substitution would result
in a new DL expression, ‘(AND (OR B C) F)’.

ALL constructor. Consider the concept expression (ALL R A). ALL denotes
the set of individuals whose role fillers for ‘R, are individuals of ‘A’. Therefore,
the two cases are:

e A is replaced by DN E. The concept expression can thus be translated
as:

(ALL R (AND D E))

e A is replaced by B U (. Taking into account that we do not consider
the ‘OR’ constructor in DL expressions, we generate the following plan
using the union set operation:

(ALL R UNION(D,E))

If the DL system allows the ‘OR’ operator, the resulting DL expression
would be ‘(ALL R (OR D E)).

Moreover, we assume that roles are translated by appropriate synonyms in the
target ontology. If not, we just consider that the whole concept expression cannot
be translated and it will be removed from the translation. The estimation of the
loss takes into account this removal.

2.3. Example: Generation of Plans

We now illustrate the computation of the plans obtained by processing the following
sample query:

Q = [NAME PAGES] for (AND BOOK (FILLS CREATOR “Carl Sagan”))

Suppose now that this query, formulated using terms of some user ontology, is
translated into another (target) ontology as follows”:

Q = [title number-of-pages] for (AND BOOK (FILLS doc-author-name “Carl
Sagan”))

The only conflicting term in the translated query is ‘BOOK’ (it has no transla-
tion into terms of the target ontology). Now suppose that the process of obtaining
the various plans corresponding to the different translations of the term ‘BOOK’
(that is not described here due to space limitation) results in the four following:

Plan 1: (AND document (FILLS doc-author-name “Carl Sagan”))

Plan 2: (AND periodical-publication (FILLS doc-author-name “Carl Sagan”))

Plan 3: (AND journal (FILLS doc-author-name “Carl Sagan”))

"Terms from the user ontology are in uppercase and terms from the target ontology are in
lowercase.



Plan 4: (AND UNION(book, proceedings, thesis, misc-publication, technical-report)
(FILLS doc-author-name “Carl Sagan”))

Notice that ‘BOOK’ has been translated by the expressions ‘document’, ‘periodical-
publication’, ‘journal’ and ‘UNION(book, proceedings, thesis, misc-publication,
technical-report)’, respectively. Details of this translation process can be found
in [18].

In order to know which plan is semantically closer to the original user query, the
loss of information incurred in each case should be estimated.

3. Estimating the Loss of Information

We present two approaches to measure the change in semantics when a term in
a query is replaced by an expression from another ontology (in an attempt to get
a full translation of the user query). The first approach is based on intensional
information and the second one is based on extensional information.

The change in semantics must be measured not only to allow the system to
decide which substitution minimizes the loss of information but also to present to
the user some kind of “level of confidence” in the answer.

3.1. Loss of Information Measurement Based on Intensional Information

In our context, and due to the use of DL systems for describing and querying the
ontologies, loss of information can be expressed as the terminological difference
between two expressions, the user query and its translation. The terminological
difference between two expressions consists of those concepts of the first expression
that are not subsumed by the second expression. The DL system is able to calculate
the difference automatically®. Let us show an example:

Original query: @ = [NAME PAGES] for (AND BOOK (FILLS CREATOR “Carl Sagan”))
Plan 1: Q = [title number-of-pages] for (AND document (FILLS doc-author-name “Carl
Sagan”))

Taking into account the following term definitions®:

BOOK = (AND PUBLICATION (ATLEAST 1 ISBN)),
PUBLICATION = (AND document (ATLEAST 1 PLACE-OF-PUBLICATION))

The terminological difference is, in this case, the concept expressions of Q not
considered in the plan, i.e., ‘(AND (ATLEAST 1 ISBN) (ATLEAST 1 PLACE-
OF-PUBLICATION))’. Therefore, the loss of information based on intensional in-
formation corresponding to Plan 1 is “Instead of books written by Carl Sagan,
OBSERVER is providing all the documents (even if they do not have an ISBN and
place of publication)!? written by Carl Sagan.”. Other examples can be found in
[16].

81f the specific DI system used lacks of that feature the terminological difference could be
calculated anyway with the help of its subsumption mechanism (see [9]).
9The terminological difference is calculated between the extended definitions.

10¢(ATLEAST 1 ISBN)’ and ‘(ATLEAST 1 PLACE-OF-PUBLICATION)’ are the concept ex-
pressions not translated.




A special problem arises when computing intensional loss due to the vocabu-
lary differences. As the intensional loss is expressed using terms of two different
ontologies, the explanation might make no sense to the user as it mixes two “vo-
cabularies”. The problem can be even worse if both ontologies are expressed in
different natural languages. So, the intensional loss can help to understand the loss
only in some cases.

In addition to the vocabulary problem, an intensional measure of the loss of
information can make it hard for the system to decide between two alternatives, in
order to execute first the plan with less loss. Thus, some numeric way of measuring
the loss should be explored.

3.2.  Loss of Information Measurement Based on Extensional Information

Precision and Recall have been widely used in Information Retrieval literature to
measure loss of information incurred when the answer to a query issued to the in-
formation retrieval system contains some proportion of irrelevant data [22]. These
measures have been adapted to our context in the following manner:

t= |Ext(C—Term)NEzt(Expression)|
- |Ext(Ezpression)|
Term)NEzt(Expression)|
|Ext(C—Term)]|

Precision = proportion of retrieved objects that are relevan

Recall = proportion of relevant objects that are retrieved = |Bat(C—

where
C-Term = conflicting term to be translated into the target ontology
Ezt(C-Term) = extension underlying C-Term = relevant objects'! (RelevantSet)
Ezpression = translation of the term, probably incurring in a loss of information
Ext(Ezpression) = extension underlying Expression = retrieved objects (RetrievedSet)

RetrievedSet = Ext(Expression)

Lossin Recall

Lossin Precision

RelevantSet = Ext(C-Term)
Figure 2: The mismatch between the RetrievedSet and Relevant Set

An expression is, in general, a combination of unions and intersections of terms in
the target ontology. Therefore, since at each step the system substitutes conflicting
terms by the intersection of its parents or by the union of its children, the estimate
size of the extension is an interval with an upper (|Ext(Expr)|.high) and lower
(|Ext(Expr)|.low) bound. It is computed as follows:

e |Ext(exprl) N Ext(expr2)|.low =0
|Ext(exprl) N Ext(expr2)|.high = min[ |Ext(exprl)|.high, |Ext(expr2)|.high ]
( ) )

e |Ext(exprl) U Ext(expr2)|.low = max[ |[Ext(exprl)|.low, |Ext(expr2)|.low ]
|Ext(exprl) U |Ext(expr2)|.high = |Ext(exprl)|.high + |Ext(expr2)|.high

I This extensional information will be retrieved, stored and updated periodically by the system.



As a trivial case, when “expr” is the name of a term, both bounds are equal to
the size of the extension of such a term.

Moreover, we use a composite measure [21] which combines the precision and
recall to estimate the loss of information. We seek to measure the extension of
the shaded area in Figure 2. Users may have widely varying preferences when it is
necessary to choose between precision and recall. We introduce a parameter a (0 < «
< 1) to capture the preference of the user where o denotes the importance attached
by a user to precision. The modified composite measure in terms of precision and
recall may be given as:

Loss = 1 - o (el

Thus, a loss of information of, for example, 0.2, which is equivalent to a loss of
information of 20%, means that, roughly speaking, the unwanted retrieved objects
plus the wanted objects not retrieved represent the 20% of the objects presented to
the user.

Notice that, as the size of the extension associated with an expression is repre-
sented by an interval, and precision, recall and loss of information metrics are based
on extension sizes, then the values obtained with those metrics will also be inter-
vals (the higher and lower bound of precision, recall and loss of information). As
functions associated with those metrics increase monotonically for positive variables
(the extensions of Term and Expr), it is possible to substitute both in the numerator
and in the denominator the lower bound (resp. upper bound) for |Ext(Expression)|
and |Ext(Term)|.

Thus, intervals (the lower and higher bound) of estimated size of extensions lead
to intervals for precision and recall. We stress that intervals in precision and recall
also lead to intervals for the loss of information measure. So, the real information
loss of an answer presented to the user will always be between a lower and higher
bound. In the following we show the two limits of the loss of information measure:

Loss.low =1 -

|

1 1 I T
3( Precision high ) T2 ( Recall.high)

Loss.high =1 -

I( T
2\ Precision.low

~|=

T T
+§(Recall.low )

In the following we explain how the system selects the best plan among several,
each one with an associated loss of information expressed as an interval. For exam-
ple, let us suppose that the system has to choose between <planl, (20%, 60%)>
and <plan2, (10%, 80%)>. It is not evident which plan is the one with less loss. We
never know the real loss of information a priori because it would require to access
to the underlying data.

The system takes its decision based on the medium value corresponding to each
interval. Given two plans and their associated loss of information, let us say <
planl, (lowy, highy) > and < plan2, (lows, highs) >, where low; and high; are the
lower and higher bound of the associated loss of information of plan;, we define
mLoss; = % as the medium value of the associated loss of information of
plan;. The following cases can arise to decide whether plan, or plany is the plan
with less loss:



(i) mLossy < mLossy => plan, is chosen as the plan with less loss.
(ii) mLossy < mLoss; = plans is chosen as the plan with less loss.

(iii) mLoss; = mLoss; = the plan with the smallest interval (high; — low;) is
chosen.

In any case, both lower bounds, low; and low,, must be greater than the value
defined by the user as the maximum loss allowed.

Lossfor Plan2

Lossfor Planl

Figure 3: Intervals representing the loss of two plans

In the previous example, the medium value of planl (40%) is lower than the
medium value of plan2 (45%), so planl would be chosen as the translation with less
loss (see Figure 3). Anyway, notice that it would be possible than the real loss of
plan2 be 10%. Other more complex probabilistic models could be used to decide
among intervals but this issue is out of the scope of our work.

3.2.1. Semantic Adaptation for Precision and Recall Measures

We present here our main contribution to the estimation of the loss of information
using precision and recall metrics. Although techniques on estimating precision
appear in Information Retrieval literature, our work differs in the following aspects:

e We give higher priority to semantic relationships than those suggested by the
underlying extensions. Only when the semantics are not available, the system
resorts to the use of extensional information.

e We modify the precision/recall/information loss measures to reflect the fact that
extensions are coming from different ontologies, i.e., A subsumes B does not
imply that A is a superset of B if they are from different ontologies. Since
the system translates a term from one ontology into an expression with terms
from another different ontology with different underlying repositories, then
the extensional relationships may not reflect the semantic relationships. For
instance a term in a user ontology which semantically'? subsumes a term in
the target ontology may have a smaller extension than the child term.

We now enumerate the various cases that arise depending on the relationship
between the conflicting term and its translation and present measures for estimating

12The interontology relationships used in integration of the ontologies are semantic and not
extensional relationships.



the information loss. We assume that a Term is translated into an Expression in the
integrated ontology. The critical step here is to estimate the extension of Expression
based on the extensions of the terms in the target ontology. Precision and recall
are adapted as follows:

(i)

(iii)

Precision and recall measures for the case where a term subsumes its transla-
tion. Semantically, the system provides a subset of the answer corresponding
to the term, as Ext(Expression) C Ext(Term) (by definition of subsump-
tion). Thus, as Term subsumes Expression, we have that Ext(Term) N Ex-
t(Expression) = Ext(Expression). Therefore:

Precision = 1,
Recall = |Ext(Term)NExt(Expression)| __ |Ext(Expression)|
- [Ezt(Term)| - |[Ezxt(Term)|

Since terms in Ezpression and Term are from a different ontology, the exten-
sion of Ezpression can be bigger than the extension of Term, although Term
subsumes Ezpression semantically. In this case we consider the extension of
Term to be: |Ext(Term)| = |Ext(Term) U Ext(Expression)|. Thus, recall can
be defined as:

_ |Ext(Exzpression)|.low
Recall.low = [Foi(E

zpression)|.low+|Ext(Term)|’

Recallhlgh = maz[\E‘a:tl(ngtpfizi):;:)s\ﬁgyf;ﬁ}gzt(Term)|]

Precision and recall measures for the case where a term is subsumed by its
translation. Semantically, all elements of the term extension are returned,
as Ext(Term) C Ext(Expression) (by definition of subsumption). Thus, as
Expression subsumes Term, we have that Ext(Term) N Ext(Expression) =
Ext(Term). The calculus of precision is similar to the one for recall in the
previous case. Therefore:

Recall =1,

. Ext(T
Precision.low = |Bat(Term))

|Ext(Exzpression)|.high+|Ext(Term)|’

|Ext(Term)|
maz[|Ezt(Ezpression)|.low,|Ext(Term)|]

Precision.high =

Term and FEzxpression are not related by any subsumption relationship. The
general case is applied directly since intersection cannot be simplified. In
this case the interval describing the possible loss will be wider as Term and
Expression are not related semantically!'?.

Precision.low = 0,

min[|Ext(Term)|,|Ext(Exzpression)|.high]
|Ext(Ezpression)|.high ’

Precision.high = max]

min[|E‘:ﬂt(Term)|,|E‘:ﬂt(E'zpression)|.low]]
|Ext(Ezpression)|.low

_ . _ mun[|Ezt(Term)|,|Ext(Ezpression)|.high]
Recall.low = 0, Recall.high = [Eei(Term)]

Given any plan it is always categorized in one of these three cases. See examples
about this issue in Section 3.2.2.

We now discuss an example to justify this semantic adaptation of the metric-
s. Notice that if Ezpr is subsumed by Term and data related to Ezpr (it is the
translation of Term) are retrieved, recall (how many relevant objects have been

13 As we change in numerator and denominator we do not know which option is greater.



retrieved) cannot be zero. In fact, all the retrieved objects are relevant because of
the subsumption property. And this is true even if the intersection of Term and
Ezpr for a given extension, at a given moment, is empty. If we do not adapt those
metrics, the estimated recall would be zero which is incorrect. In this context you
cannot trust concrete extensions but semantic properties. Performing a semantic-
s preserving translation does not imply that you obtain new data (that depends
on the underlying data, for example, table ”books” can contain no tuples), but it
prevents the system from obtaining unwanted data.

In addition to the above, two special cases can arise in which the substitution
of a term by an expression does not imply any loss:

(i) Substituting a term by the intersection of its immediate parents implies no
loss of information if it was defined as ezactly its definition'4, i.e., the term
and the intersection of its parents are semantically equivalent.

(ii) Substituting a term by the union'® of its children implies no loss of information
if there exists an extensional relationship indicating that the term is covered
extensionally by its children (total generalization).

Other semantic optimizations can be performed if overlapping and disjoint rela-
tionships are stored in the IRM repository. The union of disjoint terms is the sum
of its individual sizes and the intersection is empty. And, if percentages associated
with overlapping relationships are known (e.g., “20% of students are 50% of em-
ployees”), then these relationships can help to obtain a better approximation of the
size corresponding to the intersection of overlapping terms.

3.2.2. Example of Translation and Measurement of the Extensional Loss

We now illustrate the computation of precision, recall and loss of information for
each plan presented in Section 2.3. As the only conflicting term in the translation
was ‘BOOK’ (the only one with no synonym into the target ontology Stanford-I),
we explore the different translations for this term. For the discussions, we assume
a=0.5 (equal importance to precision and recall) and the maximum loss allowed is
50%. Notice that the calculation of loss is measured as a fraction but presented to
the user as a percentage value. The extensional values used in the example have
been obtained from the real underlying data repositories.

(i) The loss of information incurred on substitution of ‘BOOK’ by ‘document’ is
as follows; it is an example of case 2 explained in Section 3.2.1 since ‘BOOK’
is subsumed by ‘document’:

|Ext(BOOK)|=1105, |Ext(document)|=24570

. _ |E2t(BOOK)| _
Precision.low= |[Ext(BOOK)|+|Ezt(document)| =0.043,
Precision.high= | Bet(BOOK)| =0.044,

maz[|Ext(BOOK)|,|Exzt(document)]]

141n DL systems they are called defined terms and their definition specifies necessary and suffi-
cient properties.
15The DL system used in the prototype lacks disjunction but other DL systems do not.




Recall=1,

Loss.low=1- —1 . —=0.91571,
Precision high T Recall.high

Loss.high=1- - L a—y—=0.91755
Precision.low + Recall.low

(if) The loss of information incurred on substitution of ‘BOOK’ by ‘periodical-
publication’ is presented in the following. It is an example of case 3 in Section
3.2.1 since ‘BOOK’ and ‘periodical-publication’ are not related semantically
(none of them subsumes each other).

|Ext(BOOK)|=1105, |Ext(periodical-publication)|=34

Precision.low = 0,

sen . _ min[|Ezt(Term)|,|Ext(Expression)|.high]
Precision.high = max | Bri(Brpression)| high ,

min[|Ext(Term)|,|Exzt(Ezpression)|.low] ] -1
|Ezt(Exzpression)|.low -

Recall.low = 0,
Recall hlgh _ min[|Bxt(Term)|,|Ext(Expression)|.high]

[Eoi(Term)] = 0.03076,
Loss.low=1- - 1 a—ay—=0.94031,
Precision high T Recall. high
P 1 _
Loss.high=1- " =) =1
Preciston.low Recall.low

(iii) The loss of information incurred on substitution of ‘BOOK’ by ‘journal’ is the
following (another example of case 3 in Section 3.2.1):

|[Ext(BOOK)|=1105, |Ext(journal)|=8

Precision.low = 0,

sen . _ min[|Ezt(Term)|,|Ext(Expression)|.high]
Precision.high = max | Bri(Brpression)| high ,

min[|Ext(Term)|,|Ext(Ezpression)|.low] ] -1
|Ezt(Exzpression)|.low -

Recall.low = 0,
Recall hlgh _ min[|Bxt(Term)|,|Ext(Expression)|.high]

[Eai(Term)] = 0.00723,
Loss.low=1- - 1 a—ay—=0.98564,
Precision high T Recall.high
P 1 _
Loss.high=1- " =) =1
Preciston.low Recall.low

(iv) The loss of information incurred by considering the children of ‘BOOK” in the
integrated ontology is as follows:

|Ext(BOOK)|=1105, |Ext(book)|=14199, |Ext(proceedings)|=6, |Ext(thesis)|=0,
|Ext(misc-publication)|=31, |Ext(technical-report)|=1



Ext-union.low=max[|Ext(book)|, |Ext(proceedings)|, ...]|=14199,
Ext-union.high=sum[|Ext(book)|, |Ext(proceedings)]|, ...]=14237

‘BOOK’ subsumes the union of those terms since it subsumes each of them
separately, although the extension of ‘BOOK’ (1105) is smaller than the ex-
tension of the union (between 14199 and 14237). It is an example of case 1
in Section 3.2.1, where the extension of the subsumer is smaller than the ex-
tension of the subsumee (only possible when there are two ontologies involved
with different sets of underlying data repositories).

_ Fart—union.l _
EXt_eXpr'lOW_|Eact(BOOwK)rﬁi?omnt—o1r;Lion.low_0'92780’
Ext-expr.high= Brt_union.high =0.92798,

|[Ezt(BOOK)|+Exzt—union.high

Precision=1,

_ FEaxt—ezpr.low _
Recall.low= Ezt—ezpr.low+|Ezt(BOOK)| =0.92780,

s 1 Ext—expr.high __16
Recau'hlgh_ maz[|Ext(BOOK)|,Expr—ext.high] — L,
Loss.low=1- — =0,

Precision high T Recall.high
Loss.high=1- — L a—y—=0.07220

Precision.low + Recall.low

Thus, the four possible plans and the respective losses for the user query ‘(AND
BOOK (FILLS doc-author-name “Carl Sagan”)) are illustrated in Table 2.

[ Plan [ Loss of Information |
(AND document (FILLS doc-author-name “Carl Sagan”)) 91.57%<10ss<91.75%
(AND periodical-publication (FILLS doc-author-name “Carl Sagan”)) 94.03%<108s<100%
(AND journal (FILLS doc-author-name “Carl Sagan”)) 98.56%<loss<100%
(AND UNION(book, proceedings, thesis, misc-publication, technical-report)
(FILLS doc-author-name “Carl Sagan”)) 0%<10ss<7.22%

Table 2: The various plans and the associated loss of information

Only the fourth case fulfils the condition about keeping the loss of informa-
tion below the maximum loss allowed (50%) and is hence chosen. That means
that the chosen translation of the original user query ‘/NAME PAGES] for (AND
BOOK (FILLS CREATOR “Carl Sagan”))’ is ‘[title number-of-pages] for (AND
UNION (book, proceedings, thesis, misc-publication, technical-report) (FILLS doc-
author-name “Carl Sagan”))’. The answer does not contain incorrect data in the
best case (which is possible) but, in the worst case, around 7% of the ideal answer
may be missed (substituted by irrelevant data or not accessed).

161f the higher bound is 1 or the lower bound is 0, then no new information has been obtained.



4. Local Decision vs. Global Decision for Choosing the Op-
timal Plan

As we mentioned in Section 2, we propose a method which looks for all possible
translations (plans) and then chooses the one with the least loss of information. One
could think that a way to improve the performance is to decide at each step (for each
non-translated term) whether it is better to translate using the intersection of its
parents or using the union of its children. This is a case of making a local decision,
as opposed to a global one after generating all possible translations. We show in
the following that taking local decisions may result in the choice of a non-optimal
translation.

publication LOSS(book, document)
documg{ / journal
document document
m publlcatlon
Jm“’%\
book
journal
journal book
/ LOSS(pubIlcatlon journal) LOSS(book, journal)

LOSS(publication, document)
Figure 4: Counterexample for local decision vs. global decision

Consider Figure 4, where ‘book’ and ‘publication’ are terms from the user ontol-
ogy and ‘document’ and ‘journal’ are terms from the target ontology. Notice how
inner circles corresponds to subsumed terms. As ‘journal’ does not subsume ‘book’
neither ‘book’ subsumes ‘journal’ then their respective circles can overlap partially
or even not at all. Let us consider the case in which ‘book’ is a conflicting term
that has to be translated. Here it is substituted by its parents, ‘publication’, which
should be substituted by ‘document’ or by ‘journal’. Let LOSS(X, Y) be the loss of
information incurred when X is substituted by Y. As identified in the figure, on the
left, LOSS(publication, document) (Horizontal Shading) < LOSS(publication, jour-
nal) (Vertical Shading). Thus ‘document’ would be chosen as the best translation
of ‘publication’ and therefore ‘document’ would also be taken as the translation of
‘book’, the original conflicting term. But we can observe on the right side of the
figure that LOSS(book, document) (Horizontal Shading) > LOSS(book, journal)
(Vertical Shading). This means that ‘journal’ is the best translation for ‘book’
although the best translation for ‘publication’ is ‘document’.

This case arises because ‘publication’ and ‘document’ are very close extensional-
ly and semantically (‘publication’ and ‘document’ circles are very similar) and the
same is true for ‘book’ and ‘journal’ (‘book’ and ‘journal’ circles are very similar
t00). At the same time both “pairs” are quite far from each other extensionally
and semantically (see in the figure how the circles named ‘publication’ and ‘docu-
ment’ are much bigger than the circles ‘book’ and ‘journal’, i.e., ‘publication’ and
‘document’ are much more general than ‘book’ and ‘journal’). In the hierarchy we
have tried to represent this idea by placing similar abstractions at a similar height.



Every time this happens, taking local decisions is a mistake and the system would
not choose the translation with less loss correctly.

Furthermore, a recursive method that takes local decisions would need to cal-
culate the loss of information at each step by combining precision and recall of
previous stages. This technique was rejected since the extensional information of
conflicting terms, which are not the original conflicting term (they are, for instance,
parents of the original conflicting term), should not be taken into account. For
instance, in the example shown in Figure 4, where ‘book’ is the conflicting term
and ‘publication’ is a parent of ‘book’ (belonging both to the same user ontology),
a local decision at ‘publication’ would choose between translating ‘publication’ by
‘document’ or by ‘journal’. The estimation of the loss incurred would imply the use
of the size of the extensions of ‘document’, ‘journal’ and ‘publication’, as we have
seen in previous sections. But the extension of ‘publication’ will never be accessed
since the problem considered is to translate ‘book’. As they are in the same ontol-
ogy, by providing the objects of ‘publication’ we are not adding any new object if
we already accessed ‘book’. On the contrary, as ‘document’ and ‘journal’ are terms
of the target ontology (with different underlying repositories than the ones under
the user ontology), providing the objects under ‘document’ or under ‘journal’ can
enrich the current answer about ‘book’. Of course, each case has an associated
loss, so what the system has to do is to choose between ‘document’ and ‘journal’ to
obtain the translation with less loss with respect to ‘book’ (the same decision with
respect to ‘publication’ is not relevant).

5. Loss of Information for Correlated Answer across Ontolo-
gies

After the plan with the least loss for the conflicting terms is chosen, the correspond-
ing data will be retrieved from the data repositories underlying the target ontology.
In the translation process, the system takes care of keeping the loss of information
corresponding to the new data under the maximum loss defined by the user. After
accessing the data corresponding to the best plan, the system calculates the real
loss of information associated with the new answer which will be inside the interval
obtained in the estimation of the loss. Notice that now the system does not need
to approximate the extension of the translation since the data has been already
accessed and the unions and intersections have been performed. This explains why
we call it the real loss of information.

Suppose that we deal with Answer;, obtained with the user query (Query;)
executed over the user ontology (with no loss); and with Answers coming from the
first target ontology (with a certain loss of information) that corresponds to Querys
(the best translation of Query; into the first target ontology). Both answers are cor-
related by performing a union operation in order to present to the user a combined
answer. The loss of information associated with Answery was calculated based
on the estimation corresponding to answering Querys instead of Query;. There-
fore, the associated loss of information of the correlated answer can be calculated
by using the same mechanisms explained in Section 3.2 because the substitution
performed has been to use Query; U Querys (let us call it, NewQuerys). Thus



the system obtains a new answer NewAnswers = Answer; U Answer, as we have
already said'”. Remember that the system knows the exact size of extensions of
Answer; and Answers.

From this step, and until the user is satisfied with the answer, two alternatives
can arise when enriching the answer:

e The new plan (Querys) used to enrich the answer is one of the previously
calculated ones when visiting some target ontology (it will be the one with less
loss among those plans that keep the loss below the maximum loss allowed).
In this case, the same target ontology is accessed again, this time to retrieve
the data corresponding to Querys. Notice that the new answer Answers and
Answers have been obtained from the same ontology. Some special cases can
arise:

(i) If one of the two answers has an associated recall=1 the system cannot
improve the quality of the corresponding answer. A union would decrease
the precision and an intersection would decrease the recall. In this case
the new plan is rejected and a new plan is chosen by the system. This
check can actually be performed before accessing the data under Querys.

(ii) If both answers have recall=1 then an intersection does not decrease the
recall but increases the precision (less unwanted data).

NewAnswers = Answer; U (Answery N Answers)
(Answers and Answers are plans from the same ontology)

(iii) If both answers have a recall < 1 (the most common case), then the
union between them is performed in order to increase the recall in spite
of (probably) decreasing the precision.

NewAnswers = NewAnswers U Answers
(Notice that Answers is included in NewAnswers)

e No stored plan can be used, so a new target ontology is chosen and a new set
of plans is obtained. Let Querys be the one with less loss. The corresponding
underlying data, Answers, will be correlated with the previous answer by
performing a union operation.

NewAnswers = NewAnswers U Answers

Each time the system correlates two answers (the one presented previously to the
user and the new one), both with a certain loss of information associated, although
both answers keep the loss under the maximum loss allowed, it can happen that the
correlated answer has a loss of information greater than the mazimum loss defined
by the user. This can happen because in the correlated answer (obtained through
a union operation) the precision may be reduced much more than the increase in

17Query; denotes the plan used in iteration i, and Answer; is the data corresponding to that
Query;. NewAnswer; is the correlated answer in the iteration ¢ that corresponds to the plan
NewQuery; (the union of all the plans used until iteration ).



recall. In other words, although the correlated answer contains more relevant data,
it also contains much more unwanted data compared to before correlation. In Figure
5 we can observe how NewAnswer;1 = NewAnswer; U Answer;y1 (on the right)
has much more associated loss (shaded area) than NewAnswer; and Answer;q
individually (on the left and middle).

NewAnswer i

i+1

Ideal Answer Ideal Answer

Figure 5: Loss of information of a correlated answer

Thus, after obtaining the correlated answer the loss for this answer is then
calculated (instead of Query; the system has calculated the data corresponding to
NewQuery;11, i.e., the union of all the plans used until iteration ¢ + 1). If this
loss exceeds the maximum loss allowed then the correlated answer is rejected and
only the previous and the new answers are shown to the user separately (with the
corresponding warning). Future new answers could be correlated to one of the two
answers (always keeping the loss of the correlated answer below the limit). If at any
time the user allows a greater loss, then the different answers could be correlated
into one answer satisfying the restriction set by the user.

6. Conclusions

As the Web becomes the predominant environment for more and more people to
create applications, and export or share information, syntactic approaches for nav-
igation and keyword based searches are becoming increasingly inadequate. We
present, a novel approach based on the use of multiple, possibly pre-existing, real
world domain ontologies as views on the underlying data repositories. Thus, an
information request can now be expressed using terms from these ontologies and a
system can now browse multiple domain ontologies as opposed to users browsing
individual heterogeneous repositories or web pages correlated based on statistical
information.

The main contribution of this paper is the characterization of the loss of infor-
mation when a translation results in a change of semantics of the query. Measures
to estimate loss of information based on terminological difference as well as on stan-
dard and well accepted measures, such as precision and recall, are also presented.
As far as we know, our work is the first that deals with the problem of measur-
ing the imprecision of answers in the context of managing multiple distributed and
heterogeneous data repositories.

Approaches for modeling imprecision and measures for uncertain information
have been proposed in the literature. The novelty of our approach is that we provide
a set theoretic basis for an extensional measure of semantic information loss. The



user is provided with a means to control the quality of information based on his
preference of more precision or more recall, and the limit of the total loss incurred.
Furthermore, a qualitative description of information loss using intensional term
descriptions is also presented and illustrated with the help of examples. Based
on the estimates of information loss, the system chooses that translation which
minimizes the loss of information. We thus establish vocabulary heterogeneity as
the basis for identifying and measuring the quality of information, a very useful
feature for information processing in open and dynamic environments.

Experimenting with the implemented system, we found cases where, after vis-
iting several ontologies, the user did not obtain a single wanted data even when
data satisfying the user requirements were stored in some of the underlying data
repositories described by the visited ontologies. The main reasons for that were:
first, some ontologies only modeled their underlying data repositories partially; and
second, different points of view were used to describe the same conceptualizations.
However, by allowing a controlled relaxation of the precision for the same cases, da-
ta were obtained and, in fact, they did satisfy all the constraints in the user query,
although some constraints were not explicitly verified by the system. Thus, the real
loss of information associated with those “imprecise” answers was 0%. Therefore,
we conclude by stressing the importance of dealing with imprecise answers in query
processing for Global Information Systems, where there is likely to be significant
variations in modeling and semantics.
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